Post

Nerve Fiber

Types of Nerve Fiber

Classification Type Subtype Example Relative Diameter Myelination
Sensory
&
Motor
A \(\alpha\) \(\alpha\) motor neurons Large Heavily myelinated
    \(\beta\) touch, pressure Medium Heavily myelinated
    \(\gamma\) intrafusal fibers Medium Heavily myelinated
    \(\delta\) touch, pressure,
temperature, fast pain
Small Heavily myelinated
  B     Small Lightly myelinated
  C     Small Unmyelinated
Sensory I a Muscle spindle afferents Large Myelinated
    b Golgi tendon organ
afferents
Large Myelinated
  II   secondary afferents of
muscle spindles;
touch, pressure
Medium Myelinated
  III   touch, pressure, fast
pain, temperature
Small Myelinated
  IV   pain, temperature,
olfactory
Small Unmyelinated

Spinal Cord Nerve Fiber

peripheral_nerve_histologic_structure Schematic of the histologic structure of a peripheral nerve. Adapted from (Schmitd et al., 2021)

  Diameter(mm)   Number of nerve fibers  
Segment Ventral root
(Motor)
Dorsal root
(Sensory)
Ventral root
(Motor)
Dorsal root
(Sensory)
C1 0.97±0.16 1.21±0.28 2751±639 6430±1606
C2 1.34±0.30 2.61±0.51 3116±724 11947±2977
C3 0.80±0.23 2.87±0.52 2460±471 21876±1916
C4 1.39±0.24 2.49±0.34 3833±408 10647±887
C5 2.50±0.55 3.43±0.77 7841±1020 23300±2856
C6 2.23±0.73 3.99±0.75 7048±1157 36353±7451
C7 2.22±0.50 4.61±0.87 8467±1019 39653±8458
C8 1.71±0.60 3.92±0.62 5883±1000 31156±8273
T1 1.03±0.23 2.18±0.31 5788±1186 26507±7617
T2 0.75±0.11 1.30±0.14 3576±398 10234±1728
T3 0.78±0.10 1.35±0.16 5499±1126 14888±2514
T4 0.77±0.17 1.13±0.13 5485±973 10849±1832
T5 0.64±0.08 1.21±0.30 5326±1314 8355±1390
T6 0.71±0.18 1.07±0.16 3666±1407 10015±1666
T7 0.78±0.15 1.25±0.27 4297±1130 9123±1178
T8 0.83±0.25 1.29±0.18 3643±1340 7619±903
T9 0.81±0.15 1.33±0.25 5209±704 8369±967
T10 0.72±0.08 1.27±0.15 5269±963 11329±2724
T11 0.69±0.08 1.26±0.16 4870±895 9713±1824
T12 0.76±0.14 1.45±0.19 6538±892 10420±802
L1 0.81±0.07 1.55±0.28 5384±833 16820±3456
L2 0.96±0.16 1.93±0.27 7374±720 18615±±3284
L3 1.19±0.07 2.24±0.30 9169±1160 26191±2772
L4 1.04±0.07 2.48±0.38 7878±1386 31175±2686
L5 1.37±0.16 2.66±0.40 8657±1396 34455±2740
S1 1.43±0.16 2.95±0.57 8253±1419 41543±3036
S2 0.93±0.11 2.02±0.53 4766±1035 18642±1716
S3 0.55±0.07 1.32±0.60 2233±299 11971±964
S4 0.34±0.03 0.52±0.17 1356±193 3402±304
S5 0.14±0.02 0.27±0.13 906±111 2206±197

*Table adapted from (Liu et al., 2015).

dermatomes_and_cutaneous_nerves Dermatomes and Cutaneous Nerves (Wikipedia)

Optic Nerve Fibers

optic_nerve_cross_section Image adapted from (Bose et al., 2005)

  • Axon diameter: Mean=\(0.683 \mu m\), SD=\(0.369 \mu m\), SEM=\(0.026 \mu m\)​
  • Fig A: Normal human left optic never fiber cross-section (about 1million retinal ganglion cell axons).
  • Fig B: Transverse section.

Miscellaneous

Lower Bound of Axon Diameter

Axon diameters are pushed toward the channel-noise limit of \(0.1 \mu m\)​ (mature neurons) due to Spontaneous Action Potentials (SAPs) (Faisal et al., 2005).

Thickness of the Cell Membrane

\(7.5 - 10 nm\) (Elert, 2023).

Depolarisation and Hyperpolarization Voltage

student submitted image, transcription available below

Phase Voltage Duration
Depolarization 110mv 1ms
Repolarization 110mv 2~3ms
Hyperpolarization 5mv 1ms
Refractory Period / 2~3ms

Firing Rate

From \(<1Hz\) to \(200Hz\) (minimum \(5ms/spike\)).

Axonal Conduction Velocity

From \(0.1m/s\) (unmyelinated) to \(200m/s\) (myelinated) (DeMaegd et al., 2017).

Endocytosis Size Limit

Max 500nm spheres in diameter - energy-dependent process (Rejman et al., 2004).

3nm Process

  Samsung TSMC
Transistor type MBCFET FinFET
Transistor density (MTr/mm2) 150 197 (theoretical) 183 (A17 Pro)
SRAM bit-cell size (μm2) Unknown 0.0199
Transistor gate pitch (nm) 40 45

Transistor density: \(197\times 10^8 Tr/mm^2 = 197 \times 10^8 \div 1000^2 = 19700 Tr/{\mu m}^2\)

Cross-section area of a matured neuron (\(d=0.1 \mu m = 100 nm)\): \(3.14 \times 0.05^2 = 0.00785 {\mu m}^2\)​

The number of transistors that can be fitted into the cross-section: 154 (upper bound)

Minimum transistor thickness: 0.34 nm (reference)

Size of multi-walled carbon nanotube: \(10-40nm, 5-20 \mu m\) (Abdallah et al., 2020).

Reference

  1. Abdallah, B., Elhissi, A. M. A., Ahmed, W., & Najlah, M. (2020). Carbon nanotubes drug delivery system for cancer treatment. In Advances in Medical and Surgical Engineering (pp. 313–332). Academic Press. https://doi.org/10.1016/B978-0-12-819712-7.00016-4
  2. Bose, S., Dhillon, N., Ross-Cisneros, F. N., & Carelli, V. (2005). Relative post-mortem sparing of afferent pupil fibers in a patient with 3460 Leber’s hereditary optic neuropathy. Graefe’s Archive for Clinical and Experimental Ophthalmology, 243, 1175–1179.
  3. DeMaegd, M. L., Städele, C., & Stein, W. (2017). Axonal conduction velocity measurement. Bio-Protocol, 7(5), e2152–e2152.
  4. Elert, G. (2023). The Physics Factbook. https://hypertextbook.com/facts/2001/JenniferShloming.shtml
  5. Faisal, A. A., White, J. A., & Laughlin, S. B. (2005). Ion-channel noise places limits on the miniaturization of the brain’s wiring. Curr. Biol., 15(12), 1143–1149. https://doi.org/10.1016/j.cub.2005.05.056
  6. Liu, Y. T., Zhou, X. J., Ma, J., Ge, Y. B., & Cao, X. (2015). The diameters and number of nerve fibers in spinal nerve roots. J. Spinal Cord Med., 38(4), 532. https://doi.org/10.1179/1079026814Z.000000000273
  7. Rejman, J., Oberle, V., Zuhorn, I. S., & Hoekstra, D. (2004). Size-dependent internalization of particles via the pathways of clathrin- and caveolae-mediated endocytosis. Biochem. J., 377(Pt 1), 159. https://doi.org/10.1042/BJ20031253
  8. Schmitd, L. B., Perez-Pacheco, C., & D’Silva, N. J. (2021). Nerve density in cancer: Less is better. FASEB BioAdvances, 3(10), 773.
This post is licensed under CC BY 4.0 by the author.